
AWSLang: Probabilistic Threat

Modelling of the Amazon Web

Services environment

Amandeep Singh Virdi

(virdi@kth.se)

foreseeti / KTH / NTNU



Introduction

• Attack simulations provide a viable means to test the cyber security of a system.

• One common approach to implement such simulations is the use of attack graph, which trace the 

various dependencies of every step and their connection to one another in a formal way.

• To further facilitate attack simulations and to reduce the effort of creating new attack graphs for each 

system of a given type, domain-specific languages are employed.

• This thesis report presents AWSLang, which can be used to design IT system models in context to the 

AWS (Amazon Web Services) environment and analyse their weaknesses.



Background

• Threat modelling involves understanding the complexity of the system and identifying all possible 

threats to the system, regardless of whether they can be exploited or not.

• Threat modelling looks at the system from an adversary’s perspective to help designers anticipate 

attack goals and determine answers to questions about what the system is designed to protect, and 

from whom.

• Employing attack graphs during the threat modelling procedure offers a lot more advantages than 

other available methods to model a system.

• Generally, the production and analysis of attack graphs employ three steps: modelling the system; 

using attack steps to build a connected graph; analysis of the newly-constructed graph.



Background

• To facilitate threat modelling especially with respect to the construction of attack graphs and their 

analysis, probabilistic relational model has been proposed.

• It specifies how a graphical representation of probabilistic dependencies between variables should be 

constructed from a model that instantiates a class diagram (metamodel), such as the one of UML 

(Unified Modelling Language).

• Effectively, probabilistic relational threat modelling makes use of Bayesian networks to allow for attack 

simulations.

• With a system architecture model (metamodel) as the foundations, attack simulations allow for the 

execution of numerous parallel virtual penetration tests.



Meta Attack Language (MAL)

• Proposed by Johnson et al, MAL is a meta language – and not a domain-specific language – that 

facilitates attack simulations by defining what information is needed to model a particular system and 

specifying the generic attack logic.

• Classes containing attack steps constitute the core entities of a MAL specification. For example, Cloud

can be an entity in a MAL specification, initialized as cloud.

• Furthermore, the entities of MAL are related to each other. For example, the class Cloud can be 

associated with class CloudServices (initialized as services) to refer to the services offered by the 

cloud.

• Attack steps are connected to each other, and thus a successful compromise of one step leads to the 

second step.



Meta Attack Language (MAL)

asset Cloud {

| connect

-> services.accessible

}

associations

{

CloudServices [services]  *  <-- AvailableServices -->  1  [cloud]  Cloud

}



Meta Attack Language (MAL)

asset Cloud {

| connect

-> services.accessible

}

associations

{

CloudServices [services]  *  <-- AvailableServices -->  1  [cloud]  Cloud

}

entity name

attack name

attack type: OR “leads to”

association namerole name

association type: many-to-one



Meta Attack Language (MAL)

• MAL features inheritance in a manner comparable to other object-oriented languages.

abstractAsset CloudServices {

| accessible

-> requestData

& requestData

}

asset VirtualMachine extends CloudServices {

| accessKey

-> requestData

& requestData

}



Meta Attack Language (MAL)

• Some steps may be accomplished without effort. However, for to compromise some entity there is a 

fixed amount of time required.

For example, if the time to crack the access key of the virtual machine takes a mean of 12 hours and a 

standard deviation of 5 hours, it be specified by a Gamma distribution as follows:

asset VirtualMachine {

& crackAccessKey [GammaDistribution(24, 0.5)]

}



Amazon Web Services (AWS)

• Like most cloud service providers, AWS provides on-demand 

cloud computing platform and utilities to individuals and 

enterprises (both in the private and public sector), on a paid 

subscription basis.

• The AWS Cloud Infrastructure is spread over many geographical 

regions. In AWS terminology, these are called Regions and 

Availability Zones (AZs).

• AWS provides services in 19 (and expanding) categories, ranging 

from dynamic compute capacity to storage to virtual networks, etc.





Scope and Delimitations of the project



Methodology

Using the Design Science Research Process Model 

(DSR Cycle) to provide the overall structure to the 

project, the following objectives were identified:

Perform a Domain Survey

A Systematic Literature Review (SLR) of the 

AWS domain was conducted.

Construct a Feature Matrix

It maps the elements, or “assets,” in coreLang

with the assets in AWSLang.

Image taken from “A Design Science Research Methodology for Information Systems Research”



Methodology

Build a MAL specification

AWSLang was written using simple text 

editors, such as the Notepad++ tool, using 

prevalent Java syntax; and complied via a 

custom compiler based off the ANTLR 

framework.

Write Test cases

Written in Java using the Eclipse editor, two 

categories of test cases were written: Unit 

tests, and Use Case tests. 

Image taken from “A Design Science Research Methodology for Information Systems Research”



Domain Survey: Amazon EC2

• Amazon Elastic Compute Cloud provides scalable computing capacity 

in the Amazon Web Services cloud.

• The virtual computing environments offered by the EC2 service are 

called as instances. 

• These instances are grounded on various configuration of CPU, 

memory, storage, and networking capacity for the instances, known as 

the instance types.

• While the instance type essentially determines the hardware of the 

host computer, the Amazon Machine Image (AMI) is a template that 

contains the software configuration (such as an operating system, an 

application server, and other applications) for the instance.



Domain Survey: Amazon S3

• Amazon Simple Storage Service is an object storage service designed 

to offer high availability and fast retrieval at high speed for any amount 

of data.

• Data in Amazon S3 is stored as objects within buckets.

• The object key uniquely identifies the object in the bucket. In most 

cases, the file names act as the object keys.

• Object metadata is a set of name-value pairs that need to be set at the 

time the object is uploaded into the bucket.

• Amazon S3 supports subresources to store and manage the bucket 

configuration information using the Amazon S3 API or via the web 

console.



Domain Survey: Amazon VPC

• Amazon Virtual Private Cloud enables subscribers to launch AWS 

resources into a virtual network that they have defined.

• Within each VPC, subscribers can create, connect, and launch 

individual subnets.

• Each subnet must be associated with a route table, which specifies 

the allowed routes for outbound traffic and inbound traffic for the 

subnet.

• Security groups control inbound and outbound traffic for the resource 

within the VPC.



Domain Survey: Amazon IAM

• The AWS Identity and Access Management is a service offered by AWS to 

securely control access to the resource within its cloud environment.

• An IAM user is a unique identity recognized by AWS services and 

applications. 

• An IAM group is a collection of IAM users. It lets subscribers specify 

permissions for multiple users, which can make it easier to manage the 

permissions for those users.

• An IAM role is an IAM entity that defines a set of permissions for making 

AWS service requests. IAM roles are not associated with a specific user or 

group. Instead, trusted entities assume roles.



coreLang

• The core language on which AWSLang is based on mainly consists of standard IT entities useful for 

representing traditional networks and similar models. 

• The major elements of coreLang are Machine, Account, Vulnerability, Network, Data, 

Dataflow, and User.

• Each User has an Account on a Machine that they use to request Data stored on it. Machines 

communicate to each other via Dataflows over a Network.

• Some of the other elements in coreLang are: AuthMachine, VulnMachine, SoftMachine, 

Software, Product, Service, Client, AuthenticationService, NetworkService, 

NetworkClient, Router, Information, AuthData, CoreEncryptedData, CryptographicKey, 

etc.



Feature Matrix

• The main advantage of constructing such a 

feature matrix is that it prevents repetition of 

work.

• There are assets in AWSLang that have been 

adapted off coreLang, albeit with a name 

change. This is different from the “Adopted from 

coreLang with modifications” column in the 

Feature Matrix. That column is used to identify 

only those assets from coreLang whose internal 

logic needed to be modified for use in AWSLang.



AWSLang extends the core by 

introducing elements such as 
IAMaccount, Role, Group, 

etc., that are needed in order to 

model the AWS environment.



AWSLang: A brief introduction

asset Instance extends Machine {

:

| keyaccess

-> attemptConnectBasicAWSProtection,

attemptConnectAdvancedAWSProtection

& attemptConnectBasicAWSProtection

-> authenticate

| attemptConnectAdvancedAWSProtection [ExponentialDistribution(6.0)]

-> authenticate

# advancedAWSProtection

-> attemptConnectBasicAWSProtection

:

}



AWSLang: A brief introduction

asset AccessKey extends Key  {

:

| modifyKeyFile

-> _compromise

& _compromise [ExponentialDistribution(6.0)]

-> compromise

| compromise

-> assignedInstances.keyaccess,

assignedOSaccount.authenticate

:

}



AWSLang: A brief introduction

asset Bucket extends Machine {

:

| attemptConnectPublicBucket

-> bruteForceAttack

& bruteForceAttack [ExponentialDistribution(3.0)]

-> data.requestAccess

# privateBucket

-> bruteForceAttack

:

}



AWSLang: A brief introduction

asset Application extends Software {

:

| access

-> attemptAccessNoFirewall,

attemptAccessWithFirewall

& attemptAccessNoFirewall

-> _machineAccess

| attemptAccessWithFirewall [ExponentialDistribution(3.0)]

-> _machineAccess

# firewallProtection

-> attemptAccessNoFirewall

:

}



Evaluation

• For validating AWSLang, two different categories of testing were applied:

Unit tests, to ensure that each individual asset in AWSLang behaves like it is expected to.

Use case tests, that rely on the compiled attack list and validate that assets in AWSLang interact with 

each as they are expected to.

• Additionally, AWSLang was cross checked by two developers, each of whom are also working on a 

realization of MAL and is therefore familiar with the intricacies of the language. Furthermore, this also 

helped uncover any readability or user-friendliness issues due to the lack of documentation that the 

language might suffer from.



Unit tests sample: IAMaccountTest

Attacker attacker = new Attacker();

attacker.addAttackPoint(iamacct.compromise);

attacker.attack();

iamacct.compromisedAccess.assertCompromisedInstantaneously();

instance.compromisedAccess.assertCompromisedInstantaneously();

instance.denialOfService.assertCompromisedInstantaneously();

bucket.compromisedAccess.assertCompromisedInstantaneously();

bucket.access.assertCompromisedInstantaneously();

group.compromisedAccess.assertCompromisedInstantaneously();   

role.compromisedAccess.assertCompromisedInstantaneously();

network.compromisedAccess.assertCompromisedInstantaneously();

gateway.compromisedAccess.assertCompromisedInstantaneously();

secGrp.compromisedAccess.assertCompromisedInstantaneously();



Use case tests sample: TestUseCaseRoles_Instances



Conclusion and Future Work

• The exponential growth in the usage of cloud service providers and the increasing reliance of IT-

systems to their ubiquitous nature in addition to the capability that they provide make it paramount to 

assess their security, especially as these security and privacy concerns continue to grow.

• AWSLang will foster security analysts in the AWS cloud domain to model their cloud systems and to 

focus on analysing possible weaknesses.

• Although AWSLang is its current form is able to model the most-widely used AWS services and their 

interaction, further work remains.



Thank you!


